\(\)
Problem 6-20
Suppose \(V\) is turned on and off slowly. For example, let \(V(x,t)=V(x)f(t)\), where \(f(t)\) is smooth, as shown in Fig. 6-12.
\begin{equation}
\newcommand{\ds}[1]{\mbox{${\displaystyle\strut #1}$}}
\newcommand{\mb}[1]{\mathbf{#1}}
f(t)=\begin{cases} \ds{\frac{1}{2}e^{+\gamma t}} & \text{for}\quad t<0 \\
\ds{1-\frac{1}{2}e^{-\gamma t}} & \text{for}\quad \ds{0<t< \frac{T}{2}}\\
\ds{1-\frac{1}{2}e^{-\gamma (T-t)}} & \text{for}\quad \ds{\frac{T}{2}<t<T}\\
\ds{\frac{1}{2}e^{-\gamma (t-T)}} & \text{for}\quad t>T
\end{cases}
\tag{6-80}
\end{equation}
\newcommand{\ds}[1]{\mbox{${\displaystyle\strut #1}$}}
\newcommand{\mb}[1]{\mathbf{#1}}
f(t)=\begin{cases} \ds{\frac{1}{2}e^{+\gamma t}} & \text{for}\quad t<0 \\
\ds{1-\frac{1}{2}e^{-\gamma t}} & \text{for}\quad \ds{0<t< \frac{T}{2}}\\
\ds{1-\frac{1}{2}e^{-\gamma (T-t)}} & \text{for}\quad \ds{\frac{T}{2}<t<T}\\
\ds{\frac{1}{2}e^{-\gamma (t-T)}} & \text{for}\quad t>T
\end{cases}
\tag{6-80}
\end{equation}
The rise time of the function \(f(t)\) is \(1/\gamma\). Supposing that \(1/\gamma \ll T\), show that probability given by Eq. (6-79) is reduced by a factor \(\displaystyle{\left[\frac{\gamma^{2}}{\gamma^{2}+(E_m-E_n)^{2}/\hbar^{2}}\right]^{2}}\). In this definition of \(f(t)\) we will have a discontinuity in the second derivative with respect to time. Smoother functions make still further reductions.
(解答) \(V(x,t)=V(x)f(t)\) とすると, 式 (6-71) より,
\begin{align}
V_{m n}(t)&=\int_{-\infty}^{\infty}dx\,\phi^{*}(x)V(x,t)\phi_n(x)=\int_{-\infty}^{\infty}dx\,\phi^{*}(x)V(x)f(t)\phi_n(x)
=f(t)\int_{-\infty}^{\infty}dx\,\phi^{*}(x)V(x)\phi_n(x)\notag\\
&=f(t)V_{mn}
\tag{1}
\end{align}
V_{m n}(t)&=\int_{-\infty}^{\infty}dx\,\phi^{*}(x)V(x,t)\phi_n(x)=\int_{-\infty}^{\infty}dx\,\phi^{*}(x)V(x)f(t)\phi_n(x)
=f(t)\int_{-\infty}^{\infty}dx\,\phi^{*}(x)V(x)\phi_n(x)\notag\\
&=f(t)V_{mn}
\tag{1}
\end{align}
従って式 (6-77) より, 式 (6-78) に相当するものは, \(\omega=(E_m-E_n)/\hbar\) として次となる:
\begin{align}
c_{m}^{(1)}&=\lambda_{mn}^{(1)}\,e^{i(E_m t_2-E_n t_1)/\hbar}
=-\frac{i}{\hbar}\int_{t_1}^{t_2} V_{m n}(t)\,e^{i(E_m-E_n)t/\hbar}\,dt\notag\\
&=-\frac{i}{\hbar}V_{mn}\int_{-\infty}^{\infty}dt\,f(t)\,e^{i\omega t}
\tag{2}
\end{align}
c_{m}^{(1)}&=\lambda_{mn}^{(1)}\,e^{i(E_m t_2-E_n t_1)/\hbar}
=-\frac{i}{\hbar}\int_{t_1}^{t_2} V_{m n}(t)\,e^{i(E_m-E_n)t/\hbar}\,dt\notag\\
&=-\frac{i}{\hbar}V_{mn}\int_{-\infty}^{\infty}dt\,f(t)\,e^{i\omega t}
\tag{2}
\end{align}
この積分部分の \(f(t)\) に式 (6-80) を代入したものを \(I=I_1+I_2+I_3+I_4\) としたとき, 各々の区間の積分は次となる:
\begin{align}
I_1&=\int_{-\infty}^{0}dt\,\frac{1}{2}e^{\gamma t}\,e^{i\omega t}=\frac{1}{2}\frac{1}{(\gamma+i\omega)},\notag\\
I_2&=\int_0^{T/2}dt\,\left(1-\frac{1}{2}e^{-\gamma t}\right)\,e^{i\omega t}
=\frac{e^{i\omega T/2}-1}{i\omega}+\frac{e^{-(\gamma-i\omega)T/2}-1}{2(\gamma-i\omega)},\notag\\
I_3&=\int_{T/2}^{T}dt\,\left(1-\frac{1}{2}e^{-\gamma(T-t)}\right)\,e^{i\omega t}
=\frac{e^{i\omega T}-e^{i\omega T/2}}{i\omega}+\frac{e^{-\gamma T/2}e^{i\omega T/2}
-e^{i\omega T}}{2(\gamma+i\omega)},\notag\\
I_4&=\int_{T}^{\infty}dt\,\frac{1}{2}e^{-\gamma(t-T)}\,e^{i\omega t}
=\frac{e^{i\omega T}}{2(\gamma-i\omega)}
\tag{3}
\end{align}
I_1&=\int_{-\infty}^{0}dt\,\frac{1}{2}e^{\gamma t}\,e^{i\omega t}=\frac{1}{2}\frac{1}{(\gamma+i\omega)},\notag\\
I_2&=\int_0^{T/2}dt\,\left(1-\frac{1}{2}e^{-\gamma t}\right)\,e^{i\omega t}
=\frac{e^{i\omega T/2}-1}{i\omega}+\frac{e^{-(\gamma-i\omega)T/2}-1}{2(\gamma-i\omega)},\notag\\
I_3&=\int_{T/2}^{T}dt\,\left(1-\frac{1}{2}e^{-\gamma(T-t)}\right)\,e^{i\omega t}
=\frac{e^{i\omega T}-e^{i\omega T/2}}{i\omega}+\frac{e^{-\gamma T/2}e^{i\omega T/2}
-e^{i\omega T}}{2(\gamma+i\omega)},\notag\\
I_4&=\int_{T}^{\infty}dt\,\frac{1}{2}e^{-\gamma(t-T)}\,e^{i\omega t}
=\frac{e^{i\omega T}}{2(\gamma-i\omega)}
\tag{3}
\end{align}
これらを足し合わせて整理すると次となる:
\begin{align}
I&=I_1+I_2+I_3+I_4\notag\\
&=(1-e^{i\omega T})\left\{\frac{\gamma-i\omega}{2(\gamma^{2}+\omega^{2})}
-\frac{\gamma+i\omega}{2(\gamma^{2}+\omega^{2})}+\frac{i}{\omega}\right\}
+\frac{1}{2}e^{-\gamma T/2}e^{i\omega T/2}\left\{\frac{\gamma-i\omega}{\gamma^{2}+\omega^{2}}
+\frac{\gamma+i\omega}{\gamma^{2}+\omega^{2}}\right\}\notag\\
&=(1-e^{i\omega T})\frac{i\gamma^{2}}{\omega(\gamma^{2}+\omega^{2})}
+e^{-\gamma T/2}e^{i\omega T/2}\frac{\gamma}{\gamma^{2}+\omega^{2}}\notag\\
&\simeq \frac{\gamma^{2}}{(\gamma^{2}+\omega^{2})}\frac{e^{i\omega T}-1}{i\omega}
\tag{4}
\end{align}
I&=I_1+I_2+I_3+I_4\notag\\
&=(1-e^{i\omega T})\left\{\frac{\gamma-i\omega}{2(\gamma^{2}+\omega^{2})}
-\frac{\gamma+i\omega}{2(\gamma^{2}+\omega^{2})}+\frac{i}{\omega}\right\}
+\frac{1}{2}e^{-\gamma T/2}e^{i\omega T/2}\left\{\frac{\gamma-i\omega}{\gamma^{2}+\omega^{2}}
+\frac{\gamma+i\omega}{\gamma^{2}+\omega^{2}}\right\}\notag\\
&=(1-e^{i\omega T})\frac{i\gamma^{2}}{\omega(\gamma^{2}+\omega^{2})}
+e^{-\gamma T/2}e^{i\omega T/2}\frac{\gamma}{\gamma^{2}+\omega^{2}}\notag\\
&\simeq \frac{\gamma^{2}}{(\gamma^{2}+\omega^{2})}\frac{e^{i\omega T}-1}{i\omega}
\tag{4}
\end{align}
ただし, \(\gamma T\gg 1\) より \(e^{-\gamma T/2}\approx 0\) として第2項を無視する近似を行っている. 式 (2) に, この結果を代入すると,
\begin{equation}
c_{m}^{(1)}=\lambda_{mn}^{(1)}\,e^{i(E_m t_2-E_n t_1)/\hbar}=-\frac{i}{\hbar}V_{mn}
\frac{\gamma^{2}}{\gamma^{2}+\omega^{2}}\frac{e^{i\omega T}-1}{i\omega}
=\frac{\gamma^{2}}{\gamma^{2}+\omega^{2}}\,V_{mn}\,\frac{1-e^{i\omega T}}{\hbar\omega}
\tag{5}
\end{equation}
c_{m}^{(1)}=\lambda_{mn}^{(1)}\,e^{i(E_m t_2-E_n t_1)/\hbar}=-\frac{i}{\hbar}V_{mn}
\frac{\gamma^{2}}{\gamma^{2}+\omega^{2}}\frac{e^{i\omega T}-1}{i\omega}
=\frac{\gamma^{2}}{\gamma^{2}+\omega^{2}}\,V_{mn}\,\frac{1-e^{i\omega T}}{\hbar\omega}
\tag{5}
\end{equation}
この結果は, 式 (6-78) に因子 \(\displaystyle{\frac{\gamma^{2}}{\gamma^{2}+\omega^{2}}}\) だけが付加したものになっている.
また, 「遷移確率」は 遷移振幅 \(c_m^{(1)}\) を2乗したものである. よってそれは, 式 (6-79) に因子 \(\{\gamma^{2}/(\gamma^{2}+\omega^{2})\}^{2}\) を掛けたものとなる:
\begin{equation}
P(n\!\to\! m)=\left|c_m^{(1)}\right|^{2}=\left|\lambda_{mn}^{(1)}\right|^{2}
=\left(\frac{\gamma^{2}}{\gamma^{2}+\omega^{2}}\right)^{2}\times|V_{mn}|^{2}
\frac{4\sin^{2}(\omega T/2)}{(\hbar\omega)^{2}}
\tag{6}
\end{equation}
P(n\!\to\! m)=\left|c_m^{(1)}\right|^{2}=\left|\lambda_{mn}^{(1)}\right|^{2}
=\left(\frac{\gamma^{2}}{\gamma^{2}+\omega^{2}}\right)^{2}\times|V_{mn}|^{2}
\frac{4\sin^{2}(\omega T/2)}{(\hbar\omega)^{2}}
\tag{6}
\end{equation}
ただし, \(\omega=(E_m-E_n)/\hbar\) である.