物理一般

複素積分の公式について

第5章及び第6章の議論を理解するための数学的準備として, 有馬・神部:「複素関数論」の § 9.2 「積分の主値および佐藤の超関数」(p.109 \(\sim\)) からの抜粋を記しておく. 次の実軸上の積分 \(I\) ...
物理一般

式 (6-98) とその本文説明について

ファインマン経路積分の式 (6-98) は, ポテンシャル \(V\) が時間 \(t\) に依存しないときの「遷移振幅の2次の項」であった: \begin{align} e^{i(E_m t_2-E_n t_1)/\hbar}...
経路積分問題

問題 6-26 の解答例

Problem 6-26 Suppose we have two discrete energy levels \(E_{1}\) and \(E_{2}\), neither of which is in the continu...
経路積分問題

問題 6-25 の解答例

Problem 6-25 It has been argued that the equations of the electrodynamics must, like those of mechanics, be convert...
物理一般

調和振動子としての束縛電荷へのエネルギー転移とドップラー効果について

前ブログ記事「電磁波の放射について」の続きとして D.Jackson (1st Edition) の § 13.2 の抜粋 及び ランダウ=リフシッツの § 71 の抜粋を示しておこう. 調和振動子としての束縛電荷へのエネ...
物理一般

最小作用の原理 ( 変分原理 ) によるローレンツ力の導出

少しくどいとは思うが, ランダウ=リフシッツによる解析力学的なローレンツ力の導出法も示しておこう. 最小作用の原理 力学系の運動法則の最も一般的な定式化は,「最小作用の原理」または「ハミルトンの原理」で与えられる...
お知らせ

双極子放射シュミレーションプログラムの更新

前に書いた「双極子放射シュミレーションプログラム」には, 色々なバグや余計な部分も含まれていました.それらを修正し, また「複数の双極子を半波長だけ離して並べると全体の放射場に指向性が生じる」ことを演示するような補強も施したソースプログラム...
物理一般

古典物理学と場中の電荷の運動方程式について

問題 6-25 の解答を書くには「場の中の電荷の運動方程式」の理解が必要と思う. その目的で「ファインマン物理Ⅱ」を読んでいたら面白い記述を見つけたので紹介しておこう.またその補足のために, 砂川:「理論電磁気学」から必要な要点を抜...
パソコン

双極放射のシュミレーション

前のブログ中で双極放射について言及した. 実は約9年くらい前ではあるが, Java による「双極放射のシュミレーション」を行うアニメーションプログラムを書いた. 「シミュレーション」と言えるような厳密なものではないが, 一応は双極放射の...
物理一般

電磁波の放射について

問題 6-25 の解答の準備として, ランダウ=リフシッツ物理学小教程:「力学・場の理論」の第14章 電磁波の放射 から必要な部分を抜粋し, その要点をまとめておこう. 遅延ポテンシャル  運動している電荷が作る場のポテ...
経路積分問題

問題 6-24 の解答例

Problem 6-24 Suppose that the potentical \(V\) is periodic in time. For example, suppose \(V(x,t)=V(x)\big(e^{i...
物理一般

運動量空間の波動関数について

前の記事に関連して, 以前「はてなブログ」に書いてあった2019年1月7日の記事を, わずかに修正しこちらに移して提示しておくことにする. 問題 6-23 では「運動量空間の波動関数」を用いて議論しているので, それについてJ...