ファインマン

Feynman QED Eleventh Lecture

\(\textit{Eleventh Lecture}\) \(\beta\) と \(\mathbf{\alpha}\) がエルミートであるのは, 特定の表現 (in certain representations) に於いてのみであるこ...
ファインマン

Feynman QED Tenth Lecture

\(\textit{Tenth Lecture}\) \(\gamma\)行列の代数(ALGEBRA OF THE \(\gamma\) MATRICES) 前講で得られたディラック方程式は次であった: \( \def\slashed#1{...
物理一般

水素原子スペクトルの微細構造

ファインマンは, 第 9 講 (Ninth Lecture) の最初の問題の直前で次のように書いていた: 次に \(E=mc^{2}+W\) と置く.ただし \(W\ll mc^{2}\) である.そして \(V=Ze^{2}/r\) を代...
物理一般

運動量演算子は実の量(real)か!?

「運動量演算子 \(\hat{\mathbf{p}}=-i\hbar\nabla\) は実の演算子だって?.そんなバカな, だって虚数単位 \(i\) が入っているじゃないか!」. そう思われた方もいらっしゃると思う.しかし,「1次演算子 ...
物理一般

断熱不変量

水素原子スペクトルの「微細構造」に関連して「ボーア=ゾンマーフェルト模型」を調べていたら, 「断熱不変量」という物理量に遭遇した. 朝永:「量子力学」§5 と M.ボルン:「現代物理学」の第5章から,「断熱不変量」についての文章を抜粋してま...
ファインマン

Feynman QED Ninth Lecture

\(\textit{Ninth Lecture}\) 単位(UNITS) これ以降では, 次の慣習を用いる ただしこの訳では \(c,\hbar\) をきちんと表示した式を記述して行く..質量と時間そして長さの単位は, 次となるように定義す...
物理一般

反変ベクトルと共変ベクトルの違いの図示

多くの教科書で,『4元ベクトルには共変成分と反変成分の2種類がある』と習う.例えば, ランダウ:「力学・場の理論」§ 38 では次のようである: 全ての4元ベクトル \(A^{\mu}\) の大きさの2乗 \(A^2\) は, 動径4元ベク...
物理一般

4次元時空の表現法とローレンツ座標

Feynmann QED の第2章は特殊相対論の要約になっている.座標系をローレンツ変換すると, 時間と普通の座標とが互いに混ざり合うことになる.そのため相対論では, 普通の 3次元の空間に時間の軸を加えた 4次元の空間を考え, その中の一...
ファインマン

Feynman QED Eighth Lecture

\(\textit{Eighth Lecture}\) 自由空間に於けるマックスウェル方程式の解 自由空間(すなわち \(\rho=0,\,\mathbf{j}=0\) の真空)に於ける波動方程式, つまり式 (2.7.21') で \(\...
物理一般

ランダウの「4元速度の定義」が違っている!

ランダウ=リフシッツ:「場の古典論」及び「力学・場の理論」に書かれている「4元速度 \(u^{\,\mu}\)」の定義は,「時空座標 \(x^{\,\mu}\) を世界間隔 \(s\) で微分する形」の式 \begin{equation} ...
ファインマン

Feynman QED Seventh Lecture

特殊相対性理論の原理と結果の要約 \(\textit{Seventh Lecture}\) 相対性の原理とは, 関係する全ての物体が一緒に一様な速度 \(v\) で動いている場合, 全ての物理現象はまったく同じに見えるという原理である.つま...
物理一般

ローレンツ力は相対論から必然的に導出される!

前のブログ記事 ローレンツ力による電荷の運動方程式 で「ローレンツ力による電荷の運動方程式はマックスウェル方程式には含まれないらしい」と書いた.W.パウリ:「相対性理論 (上)」(ちくま学芸文庫) の§ 29 に, このことを確認できる記述...