ファインマン

式 (8-106) 及び式 (8-107)の導出

問題 (8-7) に解答する準備も兼ねて, 本文の式 (8-106) と式 (8-107) の導出を書いておく. ◎ 導出の準備として まずは,「フーリエ変換」について, H.P.スウ著「フーリエ解析」の § 4.5 以降から抜...
パソコン

コヒーレント状態の時間変化

前述した「コヒーレント状態」の波動関数は,「形が拡がらずに前後に運動する波束となる」ことが期待される.実際, コヒーレント状態の波動関数は, そのような時間変化をするであろうか?.詳しく調べて見よう. 前述のブログ記事...
物理一般

コヒーレント状態

J.J.Sakurai の第2章に次のような記述がある: 「エネルギー固有状態は \(n\) がどんなに大きくても, \(q\) や \(p\) の期待値が振動している訳ではないので, 古典的振動子のような振舞いをしない.では一体, 古典...
物理一般

調和振動子波動関数とウィグナー関数

枝松圭一著:「単一光子と量子もつれ光子(量子光学と量子光技術の基礎)」の第3章から, 1次元調和振動子の波動関数に対するウィグナー関数についての記述を抜粋要約したものを示す. 1次元調和振動子の個数状態に対する座標表示...
物理一般

同時確率分布および自己相関関数について

「コヒーレント状態」についてブログ記事を書く準備として, まずはそこで用いる基礎的な事柄をまとめておくことにする. 同時確率分布(joint probability distribution) まず初めに, 松原望著:「入門...
パソコン

Python で波動関数を図示してみる.

プログラミング言語「Python」には, 数値計算ライブラリ NumPy のためのグラフ描画ライブラリ Matplotlib が提供されているので, データの可視化を容易に行うことが出来るようだ.そこで, Python によって, ...
物理一般

波動力学での調和振動子

調和振動子の標準的な量子力学教科書の記述として, L.Pauling & B.Wilson の Introduction to Quantum Mechanics with Applications to chemistry...
経路積分問題

問題 8-6 の解答例

Problem 8-6 Show that the constants \(a_{j\alpha}\) are the same even if the coupling is not just to the nearest ne...
経路積分問題

問題 8-5 の解答例

Problem 8-5 A transition element which employs the same wave function as both the initial and final states is calle...
経路積分問題

問題 8-4 の解答例

Problem 8-4 Show that the ground-state wave function for the lagrangian of Eq. (8-78) can be written \begin{equati...
経路積分問題

問題 8-3 の解答例

Problem 8-3 Show that \(Q^{c}_{\alpha}\), \(Q^{s}_{\alpha}\) are normanl coordinates, representing, however, standi...
物理一般

離散フーリエ変換 (DFT)

基準座標の式 (8-77) は, 「デジタル信号処理」(Digital Signal Processing : DSP) に於ける「離散フーリエ変換」(DFT) の式と全く同じ形をしていることに気付いた.従って, 基準座標 \(Q_{\...