\(\)
Problem 8-2
Show that the matrix
\begin{equation*}
\tau_{jk}=\sum_\alpha \frac{a_{j\alpha}a_{k\alpha}}{\omega_\alpha}
\end{equation*}
\tau_{jk}=\sum_\alpha \frac{a_{j\alpha}a_{k\alpha}}{\omega_\alpha}
\end{equation*}
is the reciprocal square root of the \(v_{jk}\) matrix. That is, show
\begin{equation}
\sum_{l=1}^{n} \sum_{m=1}^{n} \tau_{jl}\,\tau_{lm}\,v_{mk} = \delta_{jk}
\tag{8-65}
\end{equation}
\sum_{l=1}^{n} \sum_{m=1}^{n} \tau_{jl}\,\tau_{lm}\,v_{mk} = \delta_{jk}
\tag{8-65}
\end{equation}
( 注意 ) 原書の式 (8-63) と式 (8-64) 及び式 (8-65) には問題があるようだ. 上記は, 校訂版の修正された問題文である.
( 解答 ) 式 (8-65) 中の \(\tau_{jl},\tau_{lm}\) を具体的に次としよう:
\begin{equation}
\tau_{jl}=\sum_{\alpha}\frac{a_{j\alpha}a_{l\alpha}}{\omega_{\alpha}},\quad \tau_{lm}=\sum_{\beta}
\frac{a_{l\beta}a_{m\beta}}{\omega_{\beta}}
\tag{1}
\end{equation}
\tau_{jl}=\sum_{\alpha}\frac{a_{j\alpha}a_{l\alpha}}{\omega_{\alpha}},\quad \tau_{lm}=\sum_{\beta}
\frac{a_{l\beta}a_{m\beta}}{\omega_{\beta}}
\tag{1}
\end{equation}
式 (8-44) と式 (8-48) は, (係数が対称的 \(v_{jk}=v_{kj}\) であったことから)次である:
\begin{align}
&\omega_{\alpha}^{\ 2}\,a_{j\alpha} = \sum_{k=1}^{n} v_{jk}\,a_{k\alpha}= \sum_{k=1}^{n} v_{kj}\,a_{k\alpha}\tag{8-44}\\
&\sum_{j=1}^{n} a_{j\alpha}\,a_{j\beta} = \delta_{\alpha\beta}
\tag{8-48}
\end{align}
&\omega_{\alpha}^{\ 2}\,a_{j\alpha} = \sum_{k=1}^{n} v_{jk}\,a_{k\alpha}= \sum_{k=1}^{n} v_{kj}\,a_{k\alpha}\tag{8-44}\\
&\sum_{j=1}^{n} a_{j\alpha}\,a_{j\beta} = \delta_{\alpha\beta}
\tag{8-48}
\end{align}
これらの式 (1), 式 (8-44), 式 (8-48) を利用すると, 式 (8-65) の左辺は次のように展開される:
\begin{align}
\sum_{l=1}^{n}\sum_{m=1}^{n}\tau_{jl}\tau_{lm}v_{mk}&=\sum_{l}\sum_{m}\left(\sum_{\alpha}\frac{a_{j\alpha}a_{l\alpha}}
{\omega_{\alpha}}\right)\left(\sum_{\beta}\frac{a_{l\beta}a_{m\beta}}{\omega_{\beta}}\right)\,v_{mk}\notag\\
&=\sum_{m}\sum_{\alpha}\sum_{\beta}\frac{a_{j\alpha}a_{m\beta}}{\omega_{\alpha}\omega_{\beta}}
\left(\sum_l a_{l\alpha}a_{l\beta}\right)\,v_{mk}\notag\\
&=\sum_{m}\sum_{\alpha}\sum_{\beta}\frac{a_{j\alpha}a_{m\beta}}{\omega_{\alpha}\omega_{\beta}}
\delta_{\alpha\beta}\,v_{mk}\notag\\
&=\sum_{m}\sum_{\alpha}\left(\sum_{\beta}\frac{a_{j\alpha}a_{m\beta}}{\omega_{\alpha}\omega_{\beta}}
\delta_{\alpha\beta}\right)\,v_{mk}=\sum_{m}\sum_{\alpha}\frac{a_{j\alpha}a_{m\alpha}}{\omega_{\alpha}\omega_{\alpha}}v_{mk}\notag\\
&=\sum_{\alpha}\frac{a_{j\alpha}}{\omega_{\alpha}^{\,2}}\left(\sum_m v_{mk}a_{m\alpha}\right)\notag\\
&=\sum_{\alpha}\frac{a_{j\alpha}}{\omega_{\alpha}^{\,2}}\times\omega_{\alpha}^{\,2}\,a_{k\alpha}\notag\\
&=\sum_{\alpha}a_{j\alpha}a_{k\alpha}
\tag{2}
\end{align}
\sum_{l=1}^{n}\sum_{m=1}^{n}\tau_{jl}\tau_{lm}v_{mk}&=\sum_{l}\sum_{m}\left(\sum_{\alpha}\frac{a_{j\alpha}a_{l\alpha}}
{\omega_{\alpha}}\right)\left(\sum_{\beta}\frac{a_{l\beta}a_{m\beta}}{\omega_{\beta}}\right)\,v_{mk}\notag\\
&=\sum_{m}\sum_{\alpha}\sum_{\beta}\frac{a_{j\alpha}a_{m\beta}}{\omega_{\alpha}\omega_{\beta}}
\left(\sum_l a_{l\alpha}a_{l\beta}\right)\,v_{mk}\notag\\
&=\sum_{m}\sum_{\alpha}\sum_{\beta}\frac{a_{j\alpha}a_{m\beta}}{\omega_{\alpha}\omega_{\beta}}
\delta_{\alpha\beta}\,v_{mk}\notag\\
&=\sum_{m}\sum_{\alpha}\left(\sum_{\beta}\frac{a_{j\alpha}a_{m\beta}}{\omega_{\alpha}\omega_{\beta}}
\delta_{\alpha\beta}\right)\,v_{mk}=\sum_{m}\sum_{\alpha}\frac{a_{j\alpha}a_{m\alpha}}{\omega_{\alpha}\omega_{\alpha}}v_{mk}\notag\\
&=\sum_{\alpha}\frac{a_{j\alpha}}{\omega_{\alpha}^{\,2}}\left(\sum_m v_{mk}a_{m\alpha}\right)\notag\\
&=\sum_{\alpha}\frac{a_{j\alpha}}{\omega_{\alpha}^{\,2}}\times\omega_{\alpha}^{\,2}\,a_{k\alpha}\notag\\
&=\sum_{\alpha}a_{j\alpha}a_{k\alpha}
\tag{2}
\end{align}
ここで, 前式 (8-48) の両辺に \(a_{k\alpha}\) を掛け合わせて \(\alpha\) について和をとってみると,
\begin{align}
\sum_{\alpha} a_{k\alpha}\sum_{j} a_{j\alpha}\,a_{j\beta} &= \sum_{\alpha} a_{k\alpha}\,\delta_{\alpha\beta}\notag\\
\sum_{j}\left(\sum_{\alpha} a_{j\alpha}\,a_{k\alpha}\right)\,a_{j\beta} &= a_{k\beta}
\tag{3}
\end{align}
\sum_{\alpha} a_{k\alpha}\sum_{j} a_{j\alpha}\,a_{j\beta} &= \sum_{\alpha} a_{k\alpha}\,\delta_{\alpha\beta}\notag\\
\sum_{j}\left(\sum_{\alpha} a_{j\alpha}\,a_{k\alpha}\right)\,a_{j\beta} &= a_{k\beta}
\tag{3}
\end{align}
クロネッカーデルタの性質を考慮するならば, 上式左辺のカッコ内の量が \(\delta_{jk}\) であれば右辺に等しくなる:
\begin{equation*}
\sum_{j}\delta_{jk}\,a_{j\beta} = a_{k\beta}
\end{equation*}
\sum_{j}\delta_{jk}\,a_{j\beta} = a_{k\beta}
\end{equation*}
従って, 次式が成り立てば十分である:
\begin{equation}
\sum_{\alpha} a_{j\alpha} \,a_{k\alpha} = \delta_{jk}
\tag{4}
\end{equation}
\sum_{\alpha} a_{j\alpha} \,a_{k\alpha} = \delta_{jk}
\tag{4}
\end{equation}
以上の結果式 (2) と式 (4) とから, 題意の式 (8-65) が成り立つべきである:
\begin{equation}
\sum_{l=1}^{n}\sum_{m=1}^{n}\tau_{jl}\tau_{lm}v_{mk} = \sum_{\alpha}a_{j\alpha}a_{k\alpha} = \delta_{jk}
\tag{5}
\end{equation}
\sum_{l=1}^{n}\sum_{m=1}^{n}\tau_{jl}\tau_{lm}v_{mk} = \sum_{\alpha}a_{j\alpha}a_{k\alpha} = \delta_{jk}
\tag{5}
\end{equation}
( 参考 ) 解答を得るに当たり, テル・ハール:「解析力学」の第3章を大いに参照した.そこには Feynman & Hibbs 本文の「基準座標」など多くの内容が詳しく述べられている.