式 (6-98) とその本文説明について


Feynman-Hibbs-cover
ファインマン経路積分の式 (6-98) は, ポテンシャル V が時間 t に依存しないときの「遷移振幅の2次の項」であった:

ei(Emt2Ent1)/λmn(2)=(i)2kVmkVkn0Tdt4ei(EmEk)t4/0t4dt3ei(EkEn)t3/=(i)kVmkVkn0Tdt4eiωmkt41eiωknt4ωkn=kVmkVknωkn(1eiωmkTωmk1eiωmnTωmn)(6-98)=kVmkVknEkEn(ei(EmEn)T/1EmEnei(EmEk)T/1EmEk)

「遷移振幅の2次の項 λmn(2)」は, 問題 6-17 中の式 (6-74) に示されている:
(6-74)λmn(2)=(i)2t1t2dt4t1t4dt3keiEm(t2t4)/Vmk(t4)eiEk(t4t3)/Vkn(t3)eiEn(t3t1)/

また, cm(1) は次の式 (6-78) であった:
cm(1)ei(Emt2Ent1)/λmn(1)=ei(Emt2Ent1)/×(iei(Emt2Ent1)/t1t2dtVmn(t)ei(EmEn)t/)(6-78)=iVmn0Tdtei(EmEn)T/=Vmn1ei(EmEn)T/EmEn

更に, 「ダイソン級数の式」は次であった (J.J.Sakurai を参照のこと):
UI(t)=1it0tVI(t1)UI(t1) dt1=1it0tVI(t1)[1it0t1VI(t2)UI(t2) dt2] dt1=1it0tdt1 VI(t1)+(i)2t0tdt1t0t1dt2 VI(t1)VI(t2)++(i)nt0tdt1t0t1dt2t0t(n1)dtn VI(t1)VI(t2)VI(tn)+(1)1+UI(1)(t)+UI(2)(t)++UI(n)(t)+

式 (6-98) を得るには, 上式 (6-74) の λmn(2)ei(Emt2Ent1)/ を掛け合わせ t1=0,T=t2t1 とする.そして, 前式 (6-78) と「ダイソン級数の式」の第2項目を UI(2) に利用する:
(2)UI(2)=(i)2t0tdt1t0t1dt2 VI(t1)VI(t2)

以上から,
cm(2)ei(Emt2Ent1)/λmn(2)=m|UI(2)(t2,t1)|n=m| (i)2t1t2dt4t1t4dt3VI(t4)VI(t3) |n=(i)2t1t2dt4t1t4dt3m|VI(t4)(k|kk|)VI(t3)|n=k(i)2t1t2dt4t1t4dt3m|VI(t4)|kk|VI(t3)|n=k(i)2t1t2dt4eiEmt4/VmkeiEkt4/t1t4dt3eiEkt3/VkneiEnt3/=kVmkVkn(i)0Tdt4ei(EmEk)t4/×(i)0t4dt3ei(EkEn)t3/=kVmkVkn(i)0Tdt4ei(EmEk)t4/×1ei(EkEn)t4/EkEn=kVmkVknEkEn[(i)0Tei(EmEk)t4/dt4(i)0Tei(EmEn)t4/dt4](3)=kVmkVknEkEn[1ei(EmEk)T/EmEk1ei(EmEn)T/EmEn]

上式で, 鍵カッコ内の項の符号を変えたものが式 (6-98) である:
(6-98)ei(Emt2Ent1)/λmn(2)=kVmkVknEkEn(ei(EmEn)T/1EmEnei(EmEk)T/1EmEk)

この式 (6-98) 以降の原書の説明文は次のようになっている:
The first of the two terms in the last factor of this result has the same time dependence as we have seen in our first-order result. Therefore if the other term is neglected for a moment, we see that the net result would again be to make transitions to states where Em=En, with a probability proportional to T. The probability per unit time is of the same form as Eq. (6-86) but with Mnm now given by
(6-99)Mnm=kVmkVknEkEn

If we assume that the states lie in a continuum, the sum becomes an integral. Equation (6-99) is correct in the circumstance that it is impossible to go by first-order transition, impossible not only to the state m but alse to any state k of the same energy as the initial state. Under these circumstances Vkn=0 for states such that Ek=En. Then the second term in Eq. (6-98) is never large; for it cannot be large unless EnEk is nearly zero, and then Vkn in the numerator is zero. All the effects come from the first term, and Eq. (6-99) is correct. Furthermore, in the sum over k in Eq. (6-98) there is no ambiguity at the pole where Ek=Em; for the numerator vanishes at this same value of Ek.

しかしながら, この文章の内容を考えると, 上記の青文字部分は次のように変更されるべきではないかと思われる !? :
Then the second term in Eq. (6-98) is never large; for it cannot be large unless EmEk is nearly zero, and then Vmk in the numerator is zero. All the effects come from the first term, and Eq. (6-99) is correct.