\(\)
Problem 6-12
Assume that \(V(\mathbf{r})\) is independent of time and show that the time integral of the second-order scattering term \(K^{(2)}(b, a)\) gives
\begin{align}
\def\mb#1{\mathbf{#1}}
K^{(2)}(b,a)&=\left(\frac{m}{2\pi\hbar^{2}}\right)^{2}\left(\frac{m}{2\pi i\hbar T}\right)^{3/2}\int d^{3}\mb{r}_c\int d^{3}\mb{r}_d\,
\frac{r_{c d}+r_{a c}+r_{b d}}{r_{c d}r_{a c}r_{b d}}\\
&\quad \times \left[ \exp\left(\frac{i m}{2\hbar T}\right)(r_{c d}+r_{a c}+r_{b d})^{2}\right]\,V(\mb{r}_{c})V(\mb{r}_{d})
\tag{6-58}
\end{align}
\def\mb#1{\mathbf{#1}}
K^{(2)}(b,a)&=\left(\frac{m}{2\pi\hbar^{2}}\right)^{2}\left(\frac{m}{2\pi i\hbar T}\right)^{3/2}\int d^{3}\mb{r}_c\int d^{3}\mb{r}_d\,
\frac{r_{c d}+r_{a c}+r_{b d}}{r_{c d}r_{a c}r_{b d}}\\
&\quad \times \left[ \exp\left(\frac{i m}{2\hbar T}\right)(r_{c d}+r_{a c}+r_{b d})^{2}\right]\,V(\mb{r}_{c})V(\mb{r}_{d})
\tag{6-58}
\end{align}
where the points \(a,b,c\) and \(d\) are arranged as shown in Fig. 6-9. The term \(r_{c d}\) stands for the distance between the point \(c\) and \(d\), etc. Assume that \(V(\mb{r})\) becomes negligibly small at distances which are short compared to \(R_{a}\) or \(R_{b}\). Show that the cross section is given by \(d\sigma/d\Omega = |f(\mb{q})|^{2}\) , where the scattering amplitude \(f(\mb{q})\), including the first-order term, is
\begin{align}
f(\mb{q})&=-\frac{m}{2\pi \hbar^{2}}\int d^{3}\mb{r}\,e^{-i\mb{p}_{a}\cdot\mb{r}/\hbar} \\
& + \left(\frac{m}{2\pi\hbar^{2}}\right)^{2}\int d^{3}\mb{r}_{c}\int d^{3}\mb{r}_{d}\,
e^{-i\mb{p}_{b}\cdot\mb{r}_{d}} V(\mb{r}_{d})\left(\frac{1}{r_{cd}}\right)\,e^{ipr_{cd}/\hbar}\,V(\mb{r}_{c})\,e^{i\mb{p}_{b}\cdot\mb{r}_{c}}
+ ( \mathrm{higher}\ \mathrm{order}\ \mathrm{terms} )
\tag{6-56}
\end{align}
f(\mb{q})&=-\frac{m}{2\pi \hbar^{2}}\int d^{3}\mb{r}\,e^{-i\mb{p}_{a}\cdot\mb{r}/\hbar} \\
& + \left(\frac{m}{2\pi\hbar^{2}}\right)^{2}\int d^{3}\mb{r}_{c}\int d^{3}\mb{r}_{d}\,
e^{-i\mb{p}_{b}\cdot\mb{r}_{d}} V(\mb{r}_{d})\left(\frac{1}{r_{cd}}\right)\,e^{ipr_{cd}/\hbar}\,V(\mb{r}_{c})\,e^{i\mb{p}_{b}\cdot\mb{r}_{c}}
+ ( \mathrm{higher}\ \mathrm{order}\ \mathrm{terms} )
\tag{6-56}
\end{align}
where \(\mb{p}_{b}\) is the momentum of the electron traveling in the direction of \(\mb{R}_{b}\) and \(\mb{p}_{a}\) is the momentum of an electron traveling in the direction \(-\mb{R}_{a}\). The magnitude of the momentum is \(p\), and it is approximately unchanged by an elastic scattering of the electron from the ( relatively massive ) atom.
(解答例) 式 (6-17) から,2 次の散乱項 \(K^{(2)}(b,a)\) は次である:
\begin{equation}
K^{(2)}(b,a)=\left(-\frac{i}{\hbar}\right)^{2}\int d\tau_d\int d\tau_c\,K_0(b,d)\,V(d)\,K_0(d,c)\,
V(c)\,K_0(c,a)
\tag{1}
\end{equation}
K^{(2)}(b,a)=\left(-\frac{i}{\hbar}\right)^{2}\int d\tau_d\int d\tau_c\,K_0(b,d)\,V(d)\,K_0(d,c)\,
V(c)\,K_0(c,a)
\tag{1}
\end{equation}
ここで \(d\tau=dtd\mathbf{r}\) とする.( 原書では, § 6-1 の一般的な摂動展開を議論での図 6-2 と,この問題の配置図 6-9 で点 \(c\) と点 \(d\) の位置が逆になっているので注意する! ).
式 (6-33) の \(K^{(1)}\) を求めたときと同様に考えて, 自由粒子核 \(K_0(b,c),\,K_0(c,d),\,K_0(d,a)\) の各々は式 (3-52) を 3 次元化したものを用いて次とする:
\begin{align}
K_0(b,d)&=\left(\frac{m}{2\pi i\hbar(T-t_d)}\right)^{3/2}\exp\left[\frac{im(\mb{R}_b-\mb{r}_d)^{2}}
{2\hbar(T-t_d)}\right],\\
K_0(d,c)&=\left(\frac{m}{2\pi i\hbar(t_d-t_c)}\right)^{3/2}\exp\left[\frac{im(\mb{r}_d
-\mb{r}_c)^{2}}{2\hbar(t_d-t_c)}\right],\\
K_0(c,a)&=\left(\frac{m}{2\pi i\hbar t_c}\right)^{3/2}\exp\left[\frac{im(\mb{r}_c-\mb{R}_a)^{2}}{2\hbar t_c}\right]
\tag{2}
\end{align}
K_0(b,d)&=\left(\frac{m}{2\pi i\hbar(T-t_d)}\right)^{3/2}\exp\left[\frac{im(\mb{R}_b-\mb{r}_d)^{2}}
{2\hbar(T-t_d)}\right],\\
K_0(d,c)&=\left(\frac{m}{2\pi i\hbar(t_d-t_c)}\right)^{3/2}\exp\left[\frac{im(\mb{r}_d
-\mb{r}_c)^{2}}{2\hbar(t_d-t_c)}\right],\\
K_0(c,a)&=\left(\frac{m}{2\pi i\hbar t_c}\right)^{3/2}\exp\left[\frac{im(\mb{r}_c-\mb{R}_a)^{2}}{2\hbar t_c}\right]
\tag{2}
\end{align}
ただし時間については, 暗黙の内に \(t_d>t_c\) を仮定しているので \(t_c\) の時間積分範囲は \(t_c=[0,t_d]\) とし,\(t_d\) の時間積分範囲は \(t_d=[0,T]\) とすればよい.また,\(r_{b d}\equiv \mb{R}_b-\mb{r}_d\),\(r_{d c}\equiv \mb{r}_d-\mb{r}_c\),\(r_{c a}\equiv \mb{r}_c-\mb{R}_a\) と表記し直すことにする.これらを式 (1) に適用すると次となる:
\begin{align}
&K^{(2)}(b,a)=\left(-\frac{i}{\hbar}\right)^{2}\int d^{3}\mb{r}_d\int d^{3}\mb{r}_c\,
\int_0^{T}dt_d\int_0^{t_d}dt_c\,\left(\frac{m}{2\pi i\hbar(T-t_d)}\right)^{3/2}
\exp\left[\frac{i m r_{bd}^{2}}{2\hbar(T-t_d)}\right]V(\mb{r}_d)\\
&\quad\times\left(\frac{m}{2\pi i\hbar(t_d-t_c)}\right)^{3/2}\exp\left[\frac{i m r_{dc}^{2}}{2\hbar(t_d-t_c)}\right]V(\mb{r}_c)
\left(\frac{m}{2\pi i\hbar t_c}\right)^{3/2}\exp\left[\frac{i m r_{ca}^{2}}{2\hbar t_c}\right]
\tag{3}
\end{align}
&K^{(2)}(b,a)=\left(-\frac{i}{\hbar}\right)^{2}\int d^{3}\mb{r}_d\int d^{3}\mb{r}_c\,
\int_0^{T}dt_d\int_0^{t_d}dt_c\,\left(\frac{m}{2\pi i\hbar(T-t_d)}\right)^{3/2}
\exp\left[\frac{i m r_{bd}^{2}}{2\hbar(T-t_d)}\right]V(\mb{r}_d)\\
&\quad\times\left(\frac{m}{2\pi i\hbar(t_d-t_c)}\right)^{3/2}\exp\left[\frac{i m r_{dc}^{2}}{2\hbar(t_d-t_c)}\right]V(\mb{r}_c)
\left(\frac{m}{2\pi i\hbar t_c}\right)^{3/2}\exp\left[\frac{i m r_{ca}^{2}}{2\hbar t_c}\right]
\tag{3}
\end{align}
まず \(dt_c\) についての時間積分 \(I_1\) を実施する:
\begin{align}
I_1&=\int_0^{t_d}dt_c\,\left(\frac{m}{2\pi i\hbar(t_d-t_c)}\right)^{3/2}
\left(\frac{m}{2\pi i\hbar t_c}\right)^{3/2}\exp\left[\frac{i m r_{dc}^{2}}{2\hbar(t_d-t_c)}\right]
\exp\left[\frac{i m r_{ca}^{2}}{2\hbar t_c}\right]\\
&=\left(\frac{m}{2\pi i\hbar}\right)^{3}\int_0^{t_d}\exp\left[
-\frac{mr_{dc}^{2}}{2\hbar i\,(t_d-t_c)}-\frac{mr_{ca}^{2}}{2\hbar i\,t_c}\right]
\frac{dt_c}{\left[\sqrt{(t_d-t_c)t_c}\right]^{3}}
\end{align}
I_1&=\int_0^{t_d}dt_c\,\left(\frac{m}{2\pi i\hbar(t_d-t_c)}\right)^{3/2}
\left(\frac{m}{2\pi i\hbar t_c}\right)^{3/2}\exp\left[\frac{i m r_{dc}^{2}}{2\hbar(t_d-t_c)}\right]
\exp\left[\frac{i m r_{ca}^{2}}{2\hbar t_c}\right]\\
&=\left(\frac{m}{2\pi i\hbar}\right)^{3}\int_0^{t_d}\exp\left[
-\frac{mr_{dc}^{2}}{2\hbar i\,(t_d-t_c)}-\frac{mr_{ca}^{2}}{2\hbar i\,t_c}\right]
\frac{dt_c}{\left[\sqrt{(t_d-t_c)t_c}\right]^{3}}
\end{align}
巻末付録の「役立つ定積分」の公式 (A-5) を用いる.この場合の \(a,\,b\) は,
\begin{equation}
a=\frac{mr_{dc}^{\ 2}}{2\hbar i},\quad b=\frac{mr_{ca}^{\ 2}}{2\hbar i}\quad \rightarrow\
\sqrt{a}+\sqrt{b}=\sqrt{\frac{m}{2\hbar i}}(r_{dc}+r_{ca}),\ \sqrt{ab}=\frac{m}{2\hbar i}r_{dc}r_{ca}
\end{equation}
a=\frac{mr_{dc}^{\ 2}}{2\hbar i},\quad b=\frac{mr_{ca}^{\ 2}}{2\hbar i}\quad \rightarrow\
\sqrt{a}+\sqrt{b}=\sqrt{\frac{m}{2\hbar i}}(r_{dc}+r_{ca}),\ \sqrt{ab}=\frac{m}{2\hbar i}r_{dc}r_{ca}
\end{equation}
従って,
\begin{equation}
I_1=\left(\frac{m}{2\pi i\hbar}\right)^{3}\frac{2\hbar i}{m}\sqrt{\frac{m}{2\hbar i}}
\sqrt{\frac{\pi}{t_d^{3}}}\frac{r_{dc}+r_{ca}}{r_{dc}r_{ca}}\exp\left[\frac{im}{2\hbar t_d}(r_{dc}+r_{ca})^{2}\right]
\tag{4}
\end{equation}
I_1=\left(\frac{m}{2\pi i\hbar}\right)^{3}\frac{2\hbar i}{m}\sqrt{\frac{m}{2\hbar i}}
\sqrt{\frac{\pi}{t_d^{3}}}\frac{r_{dc}+r_{ca}}{r_{dc}r_{ca}}\exp\left[\frac{im}{2\hbar t_d}(r_{dc}+r_{ca})^{2}\right]
\tag{4}
\end{equation}
この結果を式 (3) に代入し, 今度は \(dt_d\) についての時間積分を行う.やはり公式 (A-5) を同様に用いると次となる:
\begin{align}
I_2&=\frac{i^{2}}{\hbar^{2}}\int_0^{T}dt_d\,\left(\frac{m}{2\pi i\hbar(T-t_d)}\right)^{3/2}
\exp\left[\frac{i m r_{bd}^{2}}{2\hbar(T-t_d)}\right]\\
&\qquad\qquad\qquad\times\left(\frac{m}{2\pi i\hbar}\right)^{3}
\frac{2\hbar i}{m}\sqrt{\frac{m}{2\hbar i}}\sqrt{\frac{\pi}{t_d^{3}}}
\frac{r_{dc}+r_{ca}}{r_{dc}r_{ca}}\exp\left[\frac{im}{2\hbar t_d}(r_{dc}+r_{ca})^{2}\right]\\
&=\frac{i^{2}}{\hbar^{2}}\left(\frac{m}{2\pi i\hbar}\right)^{3/2}\frac{2\hbar i}{m}
\left(\frac{m}{2\pi i\hbar}\right)^{3}\sqrt{\frac{m\pi}{2\hbar i}}\frac{r_{dc}+r_{ca}}{r_{dc}r_{ca}}\\
&\qquad\qquad\qquad\times \int_0^{T}\exp\left[-\frac{mr_{bd}^{2}}{2\hbar i\,(T-t_d)}
-\frac{m(r_{dc}+r_{ca})^{2}}{2\hbar i\,t_d}\right]\frac{dt_d}{\left[\sqrt{(T-t_d)t_d}\right]^{3}}\\
&=\frac{i^{2}}{\hbar^{2}}\left(\frac{m}{2\pi i\hbar}\right)^{3/2}\frac{2\hbar i}{m}
\left(\frac{m}{2\pi i\hbar}\right)^{3}\sqrt{\frac{m\pi}{2\hbar i}}\frac{r_{dc}+r_{ca}}{r_{dc}r_{ca}}\\
&\qquad\qquad\qquad\times \frac{2\hbar i}{m}\sqrt{\frac{m\pi}{2\hbar i\,T^{3}}}
\frac{r_{bd}+r_{dc}+r_{ca}}{r_{bd}(r_{dc}+r_{ca})}\exp\left[\frac{im}{2\hbar T}(r_{bd}+r_{dc}+r_{ca})^{2}\right]\\
&=\left(-\frac{m}{2\pi\hbar^{2}}\right)^{2}\left(\frac{m}{2\pi i\hbar T}\right)^{3/2}
\frac{r_{bd}+r_{dc}+r_{ca}}{r_{bd}r_{dc}r_{ca}}\exp\left[\left(\frac{im}{2\hbar T}\right)
(r_{bd}+r_{dc}+r_{ca})^{2}\right]
\tag{5}
\end{align}
I_2&=\frac{i^{2}}{\hbar^{2}}\int_0^{T}dt_d\,\left(\frac{m}{2\pi i\hbar(T-t_d)}\right)^{3/2}
\exp\left[\frac{i m r_{bd}^{2}}{2\hbar(T-t_d)}\right]\\
&\qquad\qquad\qquad\times\left(\frac{m}{2\pi i\hbar}\right)^{3}
\frac{2\hbar i}{m}\sqrt{\frac{m}{2\hbar i}}\sqrt{\frac{\pi}{t_d^{3}}}
\frac{r_{dc}+r_{ca}}{r_{dc}r_{ca}}\exp\left[\frac{im}{2\hbar t_d}(r_{dc}+r_{ca})^{2}\right]\\
&=\frac{i^{2}}{\hbar^{2}}\left(\frac{m}{2\pi i\hbar}\right)^{3/2}\frac{2\hbar i}{m}
\left(\frac{m}{2\pi i\hbar}\right)^{3}\sqrt{\frac{m\pi}{2\hbar i}}\frac{r_{dc}+r_{ca}}{r_{dc}r_{ca}}\\
&\qquad\qquad\qquad\times \int_0^{T}\exp\left[-\frac{mr_{bd}^{2}}{2\hbar i\,(T-t_d)}
-\frac{m(r_{dc}+r_{ca})^{2}}{2\hbar i\,t_d}\right]\frac{dt_d}{\left[\sqrt{(T-t_d)t_d}\right]^{3}}\\
&=\frac{i^{2}}{\hbar^{2}}\left(\frac{m}{2\pi i\hbar}\right)^{3/2}\frac{2\hbar i}{m}
\left(\frac{m}{2\pi i\hbar}\right)^{3}\sqrt{\frac{m\pi}{2\hbar i}}\frac{r_{dc}+r_{ca}}{r_{dc}r_{ca}}\\
&\qquad\qquad\qquad\times \frac{2\hbar i}{m}\sqrt{\frac{m\pi}{2\hbar i\,T^{3}}}
\frac{r_{bd}+r_{dc}+r_{ca}}{r_{bd}(r_{dc}+r_{ca})}\exp\left[\frac{im}{2\hbar T}(r_{bd}+r_{dc}+r_{ca})^{2}\right]\\
&=\left(-\frac{m}{2\pi\hbar^{2}}\right)^{2}\left(\frac{m}{2\pi i\hbar T}\right)^{3/2}
\frac{r_{bd}+r_{dc}+r_{ca}}{r_{bd}r_{dc}r_{ca}}\exp\left[\left(\frac{im}{2\hbar T}\right)
(r_{bd}+r_{dc}+r_{ca})^{2}\right]
\tag{5}
\end{align}
これを式 (3) に代入すると,\(K^{(2)}\) が式 (6-58) のように得られる:
\begin{align}
K^{(2)}(b,a)&=\left(-\frac{m}{2\pi\hbar^{2}}\right)^{2}\left(\frac{m}{2\pi i\hbar T}\right)^{3/2}
\int d^{3}\mb{r}_c\int d^{3}\mb{r}_d\,\frac{r_{bd}+r_{dc}+r_{ca}}{r_{bd}r_{dc}r_{ca}}\\
&\qquad\qquad\times\exp\left[\left(\frac{im}{2\hbar T}\right)(r_{bd}+r_{dc}+r_{ca})^{2}\right]
V(\mb{r}_c)\,V(\mb{r}_d)
\tag{6-58}
\end{align}
K^{(2)}(b,a)&=\left(-\frac{m}{2\pi\hbar^{2}}\right)^{2}\left(\frac{m}{2\pi i\hbar T}\right)^{3/2}
\int d^{3}\mb{r}_c\int d^{3}\mb{r}_d\,\frac{r_{bd}+r_{dc}+r_{ca}}{r_{bd}r_{dc}r_{ca}}\\
&\qquad\qquad\times\exp\left[\left(\frac{im}{2\hbar T}\right)(r_{bd}+r_{dc}+r_{ca})^{2}\right]
V(\mb{r}_c)\,V(\mb{r}_d)
\tag{6-58}
\end{align}
今度は,2次までの散乱振幅 \(f(\mb{q})=f^{(1)}(\mb{q})+f^{(2)}(\mb{q})\) を考える.ただし \(f^{(1)}(\mb{q})\) は式 (6-44) 中のものである:
\begin{equation}
\frac{d\sigma(\theta)}{d\Omega}=\left| f^{(1)}(\mb{q})\right|^{2}
=\left|-\frac{m}{2\pi\hbar^{2}}v(\mb{q})\right|^{2}
\tag{6.44′}
\end{equation}
\frac{d\sigma(\theta)}{d\Omega}=\left| f^{(1)}(\mb{q})\right|^{2}
=\left|-\frac{m}{2\pi\hbar^{2}}v(\mb{q})\right|^{2}
\tag{6.44′}
\end{equation}
\(f^{(2)}(\mb{q})\) は式 (6-42) を求めたときと同様な議論により求められる.ただし式 (6-58) の \(K^{(2)}(b,a)\) に等価な式に於いては \(r_{d c}\ll r_{b d},\,r_{c a}\) なので, 次のような近似を用いよう:
\begin{align}
\def\reverse#1{\frac{1}{#1}}
\frac{r_{bd}+r_{dc}+r_{ca}}{r_{bd}r_{dc}r_{ca}}&\simeq \reverse{r_{dc}}\frac{r_{bd}+r_{ca}}{r_{bd}r_{ca}}
=\reverse{r_{dc}}\left(\reverse{r_{ca}}+\reverse{r_{bd}}\right)\\
&\simeq \reverse{r_{dc}}\left(\reverse{r_a}+\reverse{r_{b}}\right)
\tag{6}
\end{align}
\def\reverse#1{\frac{1}{#1}}
\frac{r_{bd}+r_{dc}+r_{ca}}{r_{bd}r_{dc}r_{ca}}&\simeq \reverse{r_{dc}}\frac{r_{bd}+r_{ca}}{r_{bd}r_{ca}}
=\reverse{r_{dc}}\left(\reverse{r_{ca}}+\reverse{r_{bd}}\right)\\
&\simeq \reverse{r_{dc}}\left(\reverse{r_a}+\reverse{r_{b}}\right)
\tag{6}
\end{align}
すると \(K^{(2)}\) は, 近似的に次のように書くことが出来る:
\begin{align}
&K^{(2)}(b,a)\simeq\left(-\frac{m}{2\pi\hbar^{2}}\right)^{2}
\left(\frac{m}{2\pi i\hbar T}\right)^{3/2}\left(\reverse{r_a}+\reverse{r_{b}}\right)\times I_2\\
&\quad\text{where}\quad I_2=\int d^{3}\mb{r}_c\int d^{3}\mb{r}_d\,\reverse{r_{dc}}\exp\left[\left(
\frac{im}{2\hbar T}\right)(r_{bd}+r_{dc}+r_{ca})^{2}\right]V(\mb{r}_c)\,V(\mb{r}_d)
\tag{7}
\end{align}
&K^{(2)}(b,a)\simeq\left(-\frac{m}{2\pi\hbar^{2}}\right)^{2}
\left(\frac{m}{2\pi i\hbar T}\right)^{3/2}\left(\reverse{r_a}+\reverse{r_{b}}\right)\times I_2\\
&\quad\text{where}\quad I_2=\int d^{3}\mb{r}_c\int d^{3}\mb{r}_d\,\reverse{r_{dc}}\exp\left[\left(
\frac{im}{2\hbar T}\right)(r_{bd}+r_{dc}+r_{ca})^{2}\right]V(\mb{r}_c)\,V(\mb{r}_d)
\tag{7}
\end{align}
この絶対値の 2 乗 \(|K^{(2)}(b,a)|^{2}\) と \(|K_0(b,a)|^{2}\) は,
\begin{align}
\Bigl|K^{(2)}(b,a)\Bigr|^{2}&=\left(-\frac{m}{2\pi\hbar^{2}}\right)^{4}\left|
\frac{m}{2\pi i\hbar T}\right|^{3}\frac{(r_a+r_b)^{2}}{r_a^{2}r_b^{2}}\times I_2^{2},\\
\Bigl|K_0(b,a)\Bigr|^{2}&=\left|\left(\frac{m}{2\pi i \hbar T}\right)^{3/2}\right|^{2}=\left|\frac{m}{2\pi i\hbar T}\right|^{3}
\end{align}
\Bigl|K^{(2)}(b,a)\Bigr|^{2}&=\left(-\frac{m}{2\pi\hbar^{2}}\right)^{4}\left|
\frac{m}{2\pi i\hbar T}\right|^{3}\frac{(r_a+r_b)^{2}}{r_a^{2}r_b^{2}}\times I_2^{2},\\
\Bigl|K_0(b,a)\Bigr|^{2}&=\left|\left(\frac{m}{2\pi i \hbar T}\right)^{3/2}\right|^{2}=\left|\frac{m}{2\pi i\hbar T}\right|^{3}
\end{align}
となるから, 式 (6-42) を求めたときと同様にして次が得られる:
\begin{align}
\frac{P(b)}{P(d)}&=\left|\frac{K^{(2)}(b,a)}{K_0(b,a)}\right|^{2}
=\left(-\frac{m}{2\pi\hbar^{2}}\right)^{4}I_2^{2}\times \frac{(r_a+r_b)^{2}}{r_a^{2}r_b^{2}}\\
&=\left(\frac{m}{2\pi\hbar^{2}}\right)^{2}\left|-\frac{m}{2\pi\hbar^{2}}I_2\right|^{2}\frac{(r_a+r_b)^{2}}{r_a^{2}r_b^{2}}
\end{align}
\frac{P(b)}{P(d)}&=\left|\frac{K^{(2)}(b,a)}{K_0(b,a)}\right|^{2}
=\left(-\frac{m}{2\pi\hbar^{2}}\right)^{4}I_2^{2}\times \frac{(r_a+r_b)^{2}}{r_a^{2}r_b^{2}}\\
&=\left(\frac{m}{2\pi\hbar^{2}}\right)^{2}\left|-\frac{m}{2\pi\hbar^{2}}I_2\right|^{2}\frac{(r_a+r_b)^{2}}{r_a^{2}r_b^{2}}
\end{align}
従って, 式 (6-42) との比較から, この場合の \(|v(\mb{q})|^{2}\) に相当するのは次である:
\begin{equation}
\left|v^{(2)}(\mb{q})\right|^{2}=\left|-\frac{m}{2\pi\hbar^{2}}I_2\right|^{2}\quad
\rightarrow\quad v^{(2)}(\mb{q})=-\frac{m}{2\pi\hbar^{2}}I_2
\tag{8}
\end{equation}
\left|v^{(2)}(\mb{q})\right|^{2}=\left|-\frac{m}{2\pi\hbar^{2}}I_2\right|^{2}\quad
\rightarrow\quad v^{(2)}(\mb{q})=-\frac{m}{2\pi\hbar^{2}}I_2
\tag{8}
\end{equation}
従って, 式 (6-44′) との類推で,2次のボルン散乱振幅 \(f^{(2)}(\mb{q})\) は次とすることが出来る:
\begin{align}
&f^{(2)}(\mb{q})=-\frac{m}{2\pi\hbar^{2}}v^{(2)}(\mb{q})
=\left(-\frac{m}{2\pi\hbar^{2}}\right)\times \left(-\frac{m}{2\pi\hbar^{2}}\right)I_2\\
&=\left(-\frac{m}{2\pi\hbar^{2}}\right)^{2}\int d^{3}\mb{r}_c\int d^{3}\mb{r}_d\,\reverse{r_{dc}}
\exp\left[\left(\frac{im}{2\hbar T}\right)(r_{bd}+r_{dc}+r_{ca})^{2}\right]V(\mb{r}_c)\,V(\mb{r}_d)
\tag{9}
\end{align}
&f^{(2)}(\mb{q})=-\frac{m}{2\pi\hbar^{2}}v^{(2)}(\mb{q})
=\left(-\frac{m}{2\pi\hbar^{2}}\right)\times \left(-\frac{m}{2\pi\hbar^{2}}\right)I_2\\
&=\left(-\frac{m}{2\pi\hbar^{2}}\right)^{2}\int d^{3}\mb{r}_c\int d^{3}\mb{r}_d\,\reverse{r_{dc}}
\exp\left[\left(\frac{im}{2\hbar T}\right)(r_{bd}+r_{dc}+r_{ca})^{2}\right]V(\mb{r}_c)\,V(\mb{r}_d)
\tag{9}
\end{align}
更に指数関数中の量 \((r_{b d}+r_{d c}+r_{c a})^{2}\) は, \(r_{d c}\ll r_{b d},\,r_{c a}\) であることに注意する.また,
\begin{equation}
r_{b d}\simeq R_b-\mb{i}_b\cdot\mb{r}_d,\qquad\text{and}\qquad r_{c a}\simeq R_a+\mb{i}_a\cdot\mb{r}_c
\end{equation}
r_{b d}\simeq R_b-\mb{i}_b\cdot\mb{r}_d,\qquad\text{and}\qquad r_{c a}\simeq R_a+\mb{i}_a\cdot\mb{r}_c
\end{equation}
とすることで, 次のように近似できる:
\begin{align}
&(r_{b d}+r_{d c}+r_{c a})^{2}\simeq (r_{b d}+r_{c a})^{2}+2r_{d c}(r_{b d}+r_{c a})
=(r_{b d}+r_{c a})(r_{b d}+r_{c a}+2r_{d c})\\
&=(R_b+R_a+\mb{i}_a\cdot\mb{r}_c-\mb{i}_b\cdot\mb{r}_d)(R_b+R_a+\mb{i}_a\cdot\mb{r}_c-\mb{i}_b\cdot
\mb{r}_d+2r_{dc})\\
&=(R_a+R_b)^{2}+2(R_a+R_b)(\mb{i}_a\cdot\mb{r}_c-\mb{i}_b\cdot\mb{r}_d)\\
&\quad+(\mb{i}_a\cdot\mb{r}_c-\mb{i}_b\cdot\mb{r}_d)^{2}+2(R_a+R_b)r_{dc}
+2r_{dc}(\mb{i}_a\cdot\mb{r}_c-\mb{i}_b\cdot\mb{r}_d)\\
&\simeq (R_a+R_b)^{2}+2(R_a+R_b)(\mb{i}_a\cdot\mb{r}_c-\mb{i}_b\cdot\mb{r}_d+r_{dc})
\tag{10}
\end{align}
&(r_{b d}+r_{d c}+r_{c a})^{2}\simeq (r_{b d}+r_{c a})^{2}+2r_{d c}(r_{b d}+r_{c a})
=(r_{b d}+r_{c a})(r_{b d}+r_{c a}+2r_{d c})\\
&=(R_b+R_a+\mb{i}_a\cdot\mb{r}_c-\mb{i}_b\cdot\mb{r}_d)(R_b+R_a+\mb{i}_a\cdot\mb{r}_c-\mb{i}_b\cdot
\mb{r}_d+2r_{dc})\\
&=(R_a+R_b)^{2}+2(R_a+R_b)(\mb{i}_a\cdot\mb{r}_c-\mb{i}_b\cdot\mb{r}_d)\\
&\quad+(\mb{i}_a\cdot\mb{r}_c-\mb{i}_b\cdot\mb{r}_d)^{2}+2(R_a+R_b)r_{dc}
+2r_{dc}(\mb{i}_a\cdot\mb{r}_c-\mb{i}_b\cdot\mb{r}_d)\\
&\simeq (R_a+R_b)^{2}+2(R_a+R_b)(\mb{i}_a\cdot\mb{r}_c-\mb{i}_b\cdot\mb{r}_d+r_{dc})
\tag{10}
\end{align}
すると式 (9) の積分部分 \(I_2\) は, 次のように近似して書くことが出来る:
\begin{align}
I_2&=\int d^{3}\mb{r}_c\int d^{3}\mb{r}_d\,\reverse{r_{dc}}
\exp\left[\left(\frac{im}{2\hbar T}\right)(r_{bd}+r_{dc}+r_{ca})^{2}\right]V(\mb{r}_c)\,V(\mb{r}_d)\\
&=\int d^{3}\mb{r}_c\int d^{3}\mb{r}_d\,\frac{V(\mb{r}_c)\,V(\mb{r}_d)}{r_{dc}}
\exp\left[\left(\frac{im}{2\hbar T}\right)\left\{(R_a+R_b)^{2}+2(R_a+R_b)(\mb{i}_a\cdot\mb{r}_c
-\mb{i}_b\cdot\mb{r}_d+r_{dc})\right\}\right]\\
&=\exp\left[\left(\frac{im}{2\hbar T}\right)(R_a+R_b)^{2}\right]\int d^{3}\mb{r}_c\int d^{3}\mb{r}_d
\,\frac{V(\mb{r}_c)\,V(\mb{r}_d)}{r_{dc}}\exp\left[\frac{imu}{\hbar}(\mb{i}_a\cdot\mb{r}_c-\mb{i}_b\cdot\mb{r}_d+r_{dc})\right]\\
&=\exp\left[\left(\frac{im}{2\hbar T}\right)(R_a+R_b)^{2}\right]\int d^{3}\mb{r}_c\int d^{3}\mb{r}_d
\,\reverse{r_{dc}}\exp\left[\frac{i}{\hbar}(\mb{p}_a\cdot\mb{r}_c-\mb{p}_b\cdot\mb{r}_d+pr_{dc})\right]V(\mb{r}_c)\,V(\mb{r}_d)\\
&=\exp\left[\left(\frac{im}{2\hbar T}\right)(R_a+R_b)^{2}\right]\int d^{3}\mb{r}_c\int d^{3}\mb{r}_d
\,e^{-i\mb{p}_b\cdot\mb{r}_d/\hbar}\,V(\mb{r}_d)\,\frac{e^{ipr_{dc}/\hbar}}{r_{dc}}\,V(\mb{r}_c)\,e^{i\mb{p}_a\cdot\mb{r}_c/\hbar}
\end{align}
I_2&=\int d^{3}\mb{r}_c\int d^{3}\mb{r}_d\,\reverse{r_{dc}}
\exp\left[\left(\frac{im}{2\hbar T}\right)(r_{bd}+r_{dc}+r_{ca})^{2}\right]V(\mb{r}_c)\,V(\mb{r}_d)\\
&=\int d^{3}\mb{r}_c\int d^{3}\mb{r}_d\,\frac{V(\mb{r}_c)\,V(\mb{r}_d)}{r_{dc}}
\exp\left[\left(\frac{im}{2\hbar T}\right)\left\{(R_a+R_b)^{2}+2(R_a+R_b)(\mb{i}_a\cdot\mb{r}_c
-\mb{i}_b\cdot\mb{r}_d+r_{dc})\right\}\right]\\
&=\exp\left[\left(\frac{im}{2\hbar T}\right)(R_a+R_b)^{2}\right]\int d^{3}\mb{r}_c\int d^{3}\mb{r}_d
\,\frac{V(\mb{r}_c)\,V(\mb{r}_d)}{r_{dc}}\exp\left[\frac{imu}{\hbar}(\mb{i}_a\cdot\mb{r}_c-\mb{i}_b\cdot\mb{r}_d+r_{dc})\right]\\
&=\exp\left[\left(\frac{im}{2\hbar T}\right)(R_a+R_b)^{2}\right]\int d^{3}\mb{r}_c\int d^{3}\mb{r}_d
\,\reverse{r_{dc}}\exp\left[\frac{i}{\hbar}(\mb{p}_a\cdot\mb{r}_c-\mb{p}_b\cdot\mb{r}_d+pr_{dc})\right]V(\mb{r}_c)\,V(\mb{r}_d)\\
&=\exp\left[\left(\frac{im}{2\hbar T}\right)(R_a+R_b)^{2}\right]\int d^{3}\mb{r}_c\int d^{3}\mb{r}_d
\,e^{-i\mb{p}_b\cdot\mb{r}_d/\hbar}\,V(\mb{r}_d)\,\frac{e^{ipr_{dc}/\hbar}}{r_{dc}}\,V(\mb{r}_c)\,e^{i\mb{p}_a\cdot\mb{r}_c/\hbar}
\end{align}
これから位相因子を除去したものを \(I’_{2}\) とするならば,「2次のボルン散乱振幅」\(f^{(2)}(\mb{q})\) は次のように書くことが出来る:
\begin{equation}
f^{(2)}(\mb{q})=\left(-\frac{m}{2\pi\hbar^{2}}\right)^{2}I’_{2}
=\left(-\frac{m}{2\pi\hbar^{2}}\right)^{2}\int d^{3}\mb{r}_c\int d^{3}\mb{r}_d
\,e^{-i\mb{p}_b\cdot\mb{r}_d/\hbar}\,V(\mb{r}_d)\,\frac{e^{ipr_{dc}/\hbar}}{r_{dc}}\,V(\mb{r}_c)\,e^{i\mb{p}_a\cdot\mb{r}_c/\hbar}
\tag{11}
\end{equation}
f^{(2)}(\mb{q})=\left(-\frac{m}{2\pi\hbar^{2}}\right)^{2}I’_{2}
=\left(-\frac{m}{2\pi\hbar^{2}}\right)^{2}\int d^{3}\mb{r}_c\int d^{3}\mb{r}_d
\,e^{-i\mb{p}_b\cdot\mb{r}_d/\hbar}\,V(\mb{r}_d)\,\frac{e^{ipr_{dc}/\hbar}}{r_{dc}}\,V(\mb{r}_c)\,e^{i\mb{p}_a\cdot\mb{r}_c/\hbar}
\tag{11}
\end{equation}
( 参考 ) この2次のボルン振幅 \(f^{(2)}\) に対応するものが J.J.Sakurai に書かれている.その中の § 7.2 の式 (7.2.23) である:
\begin{align}
f^{(2)}(\mb{k}^{‘},\mb{k})&=-\reverse{4\pi}\frac{2m}{\hbar^{2}}\int d^{3}x^{‘}\int d^{3}x^{”}
\,e^{-i\mb{k}\cdot\mb{x}^{‘}}\,V(\mb{x}^{‘})\left[\frac{2m}{\hbar^{2}}G_+(\mb{x}^{‘},\mb{x}^{”})\right]
V(\mb{x}^{”})e^{i\mb{k}\cdot\mb{x}^{”}}
\end{align}
f^{(2)}(\mb{k}^{‘},\mb{k})&=-\reverse{4\pi}\frac{2m}{\hbar^{2}}\int d^{3}x^{‘}\int d^{3}x^{”}
\,e^{-i\mb{k}\cdot\mb{x}^{‘}}\,V(\mb{x}^{‘})\left[\frac{2m}{\hbar^{2}}G_+(\mb{x}^{‘},\mb{x}^{”})\right]
V(\mb{x}^{”})e^{i\mb{k}\cdot\mb{x}^{”}}
\end{align}
この式中の \(G_{+}\) として § 7.1 の式 (7.1.12) を代入するならば, 記事の式 (11) となる:
\begin{align}
f^{(2)}&=-\frac{2m}{4\pi\hbar^{2}}\int d^{3}x^{‘}\int d^{3}x^{”}\,e^{-i\mb{k}\cdot\mb{x}^{‘}}\,
V(\mb{x}^{‘})\left[\frac{2m}{\hbar^{2}}\left(-\reverse{4\pi}\frac{e^{ik|\mb{x}^{‘}-\mb{x}^{”}|}}
{|\mb{x}^{‘}-\mb{x}^{”}|}\right)\right]V(\mb{x}^{”})e^{i\mb{k}\cdot\mb{x}^{”}}\\
&=\left(-\frac{m}{2\pi\hbar^{2}}\right)^{2}\int d^{3}x^{‘}\int d^{3}x^{”}\,e^{-i\mb{k}\cdot\mb{x}^{‘}}\,
V(\mb{x}^{‘})\frac{e^{ik|\mb{x}^{‘}-\mb{x}^{”}|}}{|\mb{x}^{‘}-\mb{x}^{”}|}V(\mb{x}^{”})\,e^{i\mb{k}\cdot\mb{x}^{”}}
\end{align}
f^{(2)}&=-\frac{2m}{4\pi\hbar^{2}}\int d^{3}x^{‘}\int d^{3}x^{”}\,e^{-i\mb{k}\cdot\mb{x}^{‘}}\,
V(\mb{x}^{‘})\left[\frac{2m}{\hbar^{2}}\left(-\reverse{4\pi}\frac{e^{ik|\mb{x}^{‘}-\mb{x}^{”}|}}
{|\mb{x}^{‘}-\mb{x}^{”}|}\right)\right]V(\mb{x}^{”})e^{i\mb{k}\cdot\mb{x}^{”}}\\
&=\left(-\frac{m}{2\pi\hbar^{2}}\right)^{2}\int d^{3}x^{‘}\int d^{3}x^{”}\,e^{-i\mb{k}\cdot\mb{x}^{‘}}\,
V(\mb{x}^{‘})\frac{e^{ik|\mb{x}^{‘}-\mb{x}^{”}|}}{|\mb{x}^{‘}-\mb{x}^{”}|}V(\mb{x}^{”})\,e^{i\mb{k}\cdot\mb{x}^{”}}
\end{align}
以上の結果と式 (6-44′) とから, 散乱振幅 \(f(\mb{q})\) は問題文の式 (6-59) のように書ける:
\begin{align}
f(\mb{q})&=f^{(1)}(\mb{q})+f^{(2)}(\mb{q})+\dotsb
=-\frac{m}{2\pi\hbar^{2}}v(\mb{q})+\left(-\frac{m}{2\pi\hbar^{2}}\right)^{2}I_2^{‘}\\
&=-\frac{m}{2\pi\hbar^{2}}\int d^{3}\mb{r}\,e^{i\mb{q}\cdot\mb{r}/\hbar}V(\mb{r})\\
&\quad+\left(-\frac{m}{2\pi\hbar^{2}}\right)^{2}\int d^{3}\mb{r}_c\int d^{3}\mb{r}_d
\,e^{-i\mb{p}_b\cdot\mb{r}_d/\hbar}\,V(\mb{r}_d)\,\frac{e^{ipr_{dc}/\hbar}}{r_{dc}}\,V(\mb{r}_c)
\,e^{i\mb{p}_a\cdot\mb{r}_c/\hbar}+\dotsb
\tag{6-59’}
\end{align}
f(\mb{q})&=f^{(1)}(\mb{q})+f^{(2)}(\mb{q})+\dotsb
=-\frac{m}{2\pi\hbar^{2}}v(\mb{q})+\left(-\frac{m}{2\pi\hbar^{2}}\right)^{2}I_2^{‘}\\
&=-\frac{m}{2\pi\hbar^{2}}\int d^{3}\mb{r}\,e^{i\mb{q}\cdot\mb{r}/\hbar}V(\mb{r})\\
&\quad+\left(-\frac{m}{2\pi\hbar^{2}}\right)^{2}\int d^{3}\mb{r}_c\int d^{3}\mb{r}_d
\,e^{-i\mb{p}_b\cdot\mb{r}_d/\hbar}\,V(\mb{r}_d)\,\frac{e^{ipr_{dc}/\hbar}}{r_{dc}}\,V(\mb{r}_c)
\,e^{i\mb{p}_a\cdot\mb{r}_c/\hbar}+\dotsb
\tag{6-59’}
\end{align}
(注) Emended Edition by D.F.Styer では, 式 (6-58) において \(1/2\) が挿入されており, またその結果として式 (6.59) にも因子 \(1/2\) が挿入されている !?.これは, ぼっとすると \(K^{(2)}\) に式 (6-13) ではなくて式 (6-7) の方を直接用いてしまったからかも知れない ?! .両者には因子 \(1/2\) の違いがある.詳しくは, 前に書いた記事:「付録:「役に立つ定積分」に追加された公式 (A.12) について」を参照してほしい.